Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria.

Identifieur interne : 002090 ( Main/Exploration ); précédent : 002089; suivant : 002091

Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria.

Auteurs : Tomáš V Trovsk [République tchèque] ; Kari Timo Steffen [Finlande] ; Petr Baldrian [République tchèque]

Source :

RBID : pubmed:24551229

Descripteurs français

English descriptors

Abstract

While it is known that several Actinobacteria produce enzymes that decompose polysaccharides or phenolic compounds in dead plant biomass, the occurrence of these traits in the environment remains largely unclear. The aim of this work was to screen isolated actinobacterial strains to explore their ability to produce extracellular enzymes that participate in the degradation of polysaccharides and their ability to cometabolically transform phenolic compounds of various complexities. Actinobacterial strains were isolated from meadow and forest soils and screened for their ability to grow on lignocellulose. The potential to transform (14)C-labelled phenolic substrates (dehydrogenation polymer (DHP), lignin and catechol) and to produce a range of extracellular, hydrolytic enzymes was investigated in three strains of Streptomyces spp. that possessed high lignocellulose degrading activity. Isolated strains showed high variation in their ability to produce cellulose- and hemicellulose-degrading enzymes and were able to mineralise up to 1.1% and to solubilise up to 4% of poplar lignin and to mineralise up to 11.4% and to solubilise up to 64% of catechol, while only minimal mineralisation of DHP was observed. The results confirm the potential importance of Actinobacteria in lignocellulose degradation, although it is likely that the decomposition of biopolymers is limited to strains that represent only a minor portion of the entire community, while the range of simple, carbon-containing compounds that serve as sources for actinobacterial growth is relatively wide.

DOI: 10.1371/journal.pone.0089108
PubMed: 24551229
PubMed Central: PMC3923840


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria.</title>
<author>
<name sortKey="V Trovsk, Tomas" sort="V Trovsk, Tomas" uniqKey="V Trovsk T" first="Tomáš" last="V Trovsk">Tomáš V Trovsk</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, v.v.i., Praha, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, v.v.i., Praha</wicri:regionArea>
<placeName>
<settlement type="city">Prague</settlement>
<region type="région" nuts="2">Bohême centrale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Steffen, Kari Timo" sort="Steffen, Kari Timo" uniqKey="Steffen K" first="Kari Timo" last="Steffen">Kari Timo Steffen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Baldrian, Petr" sort="Baldrian, Petr" uniqKey="Baldrian P" first="Petr" last="Baldrian">Petr Baldrian</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, v.v.i., Praha, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, v.v.i., Praha</wicri:regionArea>
<placeName>
<settlement type="city">Prague</settlement>
<region type="région" nuts="2">Bohême centrale</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24551229</idno>
<idno type="pmid">24551229</idno>
<idno type="doi">10.1371/journal.pone.0089108</idno>
<idno type="pmc">PMC3923840</idno>
<idno type="wicri:Area/Main/Corpus">002294</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002294</idno>
<idno type="wicri:Area/Main/Curation">002294</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002294</idno>
<idno type="wicri:Area/Main/Exploration">002294</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria.</title>
<author>
<name sortKey="V Trovsk, Tomas" sort="V Trovsk, Tomas" uniqKey="V Trovsk T" first="Tomáš" last="V Trovsk">Tomáš V Trovsk</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, v.v.i., Praha, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, v.v.i., Praha</wicri:regionArea>
<placeName>
<settlement type="city">Prague</settlement>
<region type="région" nuts="2">Bohême centrale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Steffen, Kari Timo" sort="Steffen, Kari Timo" uniqKey="Steffen K" first="Kari Timo" last="Steffen">Kari Timo Steffen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Baldrian, Petr" sort="Baldrian, Petr" uniqKey="Baldrian P" first="Petr" last="Baldrian">Petr Baldrian</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, v.v.i., Praha, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, v.v.i., Praha</wicri:regionArea>
<placeName>
<settlement type="city">Prague</settlement>
<region type="région" nuts="2">Bohême centrale</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (biosynthesis)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Biomass (MeSH)</term>
<term>Carbon Radioisotopes (MeSH)</term>
<term>Catechols (metabolism)</term>
<term>Cellulose (metabolism)</term>
<term>Cellulose 1,4-beta-Cellobiosidase (biosynthesis)</term>
<term>Hydrolysis (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Lignin (metabolism)</term>
<term>Populus (chemistry)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Streptomyces (enzymology)</term>
<term>Streptomyces (isolation & purification)</term>
<term>Trees (chemistry)</term>
<term>Xylosidases (biosynthesis)</term>
<term>beta-Glucosidase (biosynthesis)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (composition chimique)</term>
<term>Biomasse (MeSH)</term>
<term>Catéchols (métabolisme)</term>
<term>Cellulose (métabolisme)</term>
<term>Cellulose 1,4-beta-cellobiosidase (biosynthèse)</term>
<term>Cinétique (MeSH)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Hydrolyse (MeSH)</term>
<term>Lignine (métabolisme)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Populus (composition chimique)</term>
<term>Protéines bactériennes (biosynthèse)</term>
<term>Radio-isotopes du carbone (MeSH)</term>
<term>Streptomyces (enzymologie)</term>
<term>Streptomyces (isolement et purification)</term>
<term>Xylosidases (biosynthèse)</term>
<term>bêta-Glucosidase (biosynthèse)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Cellulose 1,4-beta-Cellobiosidase</term>
<term>Xylosidases</term>
<term>beta-Glucosidase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Catechols</term>
<term>Cellulose</term>
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Cellulose 1,4-beta-cellobiosidase</term>
<term>Protéines bactériennes</term>
<term>Xylosidases</term>
<term>bêta-Glucosidase</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Arbres</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Streptomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Streptomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Streptomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Streptomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Catéchols</term>
<term>Cellulose</term>
<term>Lignine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Biomass</term>
<term>Carbon Radioisotopes</term>
<term>Hydrolysis</term>
<term>Kinetics</term>
<term>Soil Microbiology</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biomasse</term>
<term>Cinétique</term>
<term>Dépollution biologique de l'environnement</term>
<term>Hydrolyse</term>
<term>Microbiologie du sol</term>
<term>Radio-isotopes du carbone</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">While it is known that several Actinobacteria produce enzymes that decompose polysaccharides or phenolic compounds in dead plant biomass, the occurrence of these traits in the environment remains largely unclear. The aim of this work was to screen isolated actinobacterial strains to explore their ability to produce extracellular enzymes that participate in the degradation of polysaccharides and their ability to cometabolically transform phenolic compounds of various complexities. Actinobacterial strains were isolated from meadow and forest soils and screened for their ability to grow on lignocellulose. The potential to transform (14)C-labelled phenolic substrates (dehydrogenation polymer (DHP), lignin and catechol) and to produce a range of extracellular, hydrolytic enzymes was investigated in three strains of Streptomyces spp. that possessed high lignocellulose degrading activity. Isolated strains showed high variation in their ability to produce cellulose- and hemicellulose-degrading enzymes and were able to mineralise up to 1.1% and to solubilise up to 4% of poplar lignin and to mineralise up to 11.4% and to solubilise up to 64% of catechol, while only minimal mineralisation of DHP was observed. The results confirm the potential importance of Actinobacteria in lignocellulose degradation, although it is likely that the decomposition of biopolymers is limited to strains that represent only a minor portion of the entire community, while the range of simple, carbon-containing compounds that serve as sources for actinobacterial growth is relatively wide. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24551229</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria.</ArticleTitle>
<Pagination>
<MedlinePgn>e89108</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0089108</ELocationID>
<Abstract>
<AbstractText>While it is known that several Actinobacteria produce enzymes that decompose polysaccharides or phenolic compounds in dead plant biomass, the occurrence of these traits in the environment remains largely unclear. The aim of this work was to screen isolated actinobacterial strains to explore their ability to produce extracellular enzymes that participate in the degradation of polysaccharides and their ability to cometabolically transform phenolic compounds of various complexities. Actinobacterial strains were isolated from meadow and forest soils and screened for their ability to grow on lignocellulose. The potential to transform (14)C-labelled phenolic substrates (dehydrogenation polymer (DHP), lignin and catechol) and to produce a range of extracellular, hydrolytic enzymes was investigated in three strains of Streptomyces spp. that possessed high lignocellulose degrading activity. Isolated strains showed high variation in their ability to produce cellulose- and hemicellulose-degrading enzymes and were able to mineralise up to 1.1% and to solubilise up to 4% of poplar lignin and to mineralise up to 11.4% and to solubilise up to 64% of catechol, while only minimal mineralisation of DHP was observed. The results confirm the potential importance of Actinobacteria in lignocellulose degradation, although it is likely that the decomposition of biopolymers is limited to strains that represent only a minor portion of the entire community, while the range of simple, carbon-containing compounds that serve as sources for actinobacterial growth is relatively wide. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Větrovský</LastName>
<ForeName>Tomáš</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, v.v.i., Praha, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Steffen</LastName>
<ForeName>Kari Timo</ForeName>
<Initials>KT</Initials>
<AffiliationInfo>
<Affiliation>Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baldrian</LastName>
<ForeName>Petr</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, v.v.i., Praha, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>02</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002250">Carbon Radioisotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002396">Catechols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.-</RegistryNumber>
<NameOfSubstance UI="D014995">Xylosidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.21</RegistryNumber>
<NameOfSubstance UI="D001617">beta-Glucosidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.37</RegistryNumber>
<NameOfSubstance UI="C026579">exo-1,4-beta-D-xylosidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.91</RegistryNumber>
<NameOfSubstance UI="D043366">Cellulose 1,4-beta-Cellobiosidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>LF3AJ089DQ</RegistryNumber>
<NameOfSubstance UI="C034221">catechol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002250" MajorTopicYN="N">Carbon Radioisotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002396" MajorTopicYN="N">Catechols</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043366" MajorTopicYN="N">Cellulose 1,4-beta-Cellobiosidase</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013302" MajorTopicYN="N">Streptomyces</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014995" MajorTopicYN="N">Xylosidases</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001617" MajorTopicYN="N">beta-Glucosidase</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>11</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>01</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>2</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>2</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24551229</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0089108</ArticleId>
<ArticleId IdType="pii">PONE-D-13-49157</ArticleId>
<ArticleId IdType="pmc">PMC3923840</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>FEMS Microbiol Rev. 2010 Mar;34(2):171-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20088961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1981 Feb;41(2):337-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16345706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 5;333(6043):762-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21764756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 1996 Feb;60(2):188-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9063964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1992 May;58(5):1447-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1622210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enzyme Microb Technol. 2011 Aug 10;49(3):277-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22112512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 1977 Aug 26;114(2):149-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">907426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2008 May;93(4):437-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18027102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(6):e39331</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22723998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enzyme Microb Technol. 2011 Jun 10;49(1):94-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22112277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Microbiol. 2005 Sep;8(3):195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16200498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2012 Jun;80(3):735-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22379979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbios. 1973 Jun-Aug;8(29):7-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4765901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2007 Nov;98(15):2866-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17127051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2012 Apr 11;60(14):3776-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22428991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1996;50:183-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8905079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1978 Jun;35(6):1041-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">677871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e43480</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22912883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1990 Jul;56(7):2213-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2167628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1983 Nov;46(5):1201-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16346424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Jan;78(2):607-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22101041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2005 Sep;29(4):795-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16102603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2011 Feb;75(2):291-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21114504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 May;74(9):2902-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18344341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2010 May 15;177(1-3):593-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20096999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Biotechnol. 2009 Sep;19(9):873-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19809242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Sep;76(17):5827-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20622122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 29;336(6089):1715-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Mar;79(5):1545-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23263967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2010 Sep 8;58(17):9833-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20687562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2005 Apr;67(1):91-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15538554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2002 Sep;66(3):506-77, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12209002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Biotechnol. 2007 Aug;17(8):1291-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18051597</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Finlande</li>
<li>République tchèque</li>
</country>
<region>
<li>Bohême centrale</li>
<li>Uusimaa</li>
</region>
<settlement>
<li>Helsinki</li>
<li>Prague</li>
</settlement>
<orgName>
<li>Université d'Helsinki</li>
</orgName>
</list>
<tree>
<country name="République tchèque">
<region name="Bohême centrale">
<name sortKey="V Trovsk, Tomas" sort="V Trovsk, Tomas" uniqKey="V Trovsk T" first="Tomáš" last="V Trovsk">Tomáš V Trovsk</name>
</region>
<name sortKey="Baldrian, Petr" sort="Baldrian, Petr" uniqKey="Baldrian P" first="Petr" last="Baldrian">Petr Baldrian</name>
</country>
<country name="Finlande">
<region name="Uusimaa">
<name sortKey="Steffen, Kari Timo" sort="Steffen, Kari Timo" uniqKey="Steffen K" first="Kari Timo" last="Steffen">Kari Timo Steffen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002090 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002090 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24551229
   |texte=   Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24551229" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020